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INTRODUCTION TO THE COURSE 
 
COURSE DESCRIPTION 
CSC 214 is a comprehensive introduction to theories and practices in Database 
Design and Management. Database Management I concentrates on principles, 
design, implementation and application of Database Management Systems. 
Students are introduced to the fundamental theories, concepts and techniques 
needed to properly understand and implement the relational database model 
which is the bedrock of today’s mainstream database products. 
 
COURSE JUSTIFICATION 
An in-depth understanding of the principles and application of database systems 
is a critical success factor for information professionals taking leadership 
roles in future information systems initiatives. This course offers students the 
opportunity of rigorous study of the traditional principles of database design, 
implementation and usage. 
 
COURSE OBJECTIVES 
Upon successful completion, students should be able to:  

§ Demonstrate good knowledge of basic database concepts, including the 
structure and operation of the relational data model. 

§ Understand and successfully apply logical database design principles, 
including E-R diagrams and database normalization. 

§ Assess the quality and ease of use of data modelling and diagramming tools. 
§ Design and implement a small database project. 
§ Describe and discuss selected advanced database topics, such as distributed 

database systems and the data warehouse.   
 
COURSE CONTENTS 
Information storage & retrieval, information management applications. Information 
capture and representation, analysis & indexing, search, retrieval, information 
privacy; integrity, security; scalability, efficiency and effectiveness. 
Introduction to database system: 
Components of database systems DBMS functions, Database architecture and data 
independence. Data modelling, Entity-relationship model, Database, design using 
entity-relationship and semantic object models, Relational data model, process of 
database design. 
 
COURSE REQUIREMENT 
There are no formal prerequisites for this course.  
 
 
 
 
 
 
METHOD OF GRADING 
Method of grading 
S/N GRADING SCORE(%) 

1.  
Continuous Assessments 

• C.AI 
 

7% 



• C.AII (Mid-Semester Test) 
• C.AIII 

15% 
8% 

2.  Assignment 
 3.  Practical (Laboratory work)/ Case 

Studies 
4.  Final Examination 70% 
5.  Total 100 

 
Course Delivery Strategies:  
Lectures are delivered via electronic media (e-learning platform and power 
point presentations) and other available multimedia resources. Students are 
also encouraged to work with our programmers and avail themselves of 
laboratory facilities for practical work. Students are expected to demonstrate 
their understanding of concepts by completing given tasks in class and 
submitting assignments as at when due. 
 
Resources used/Reading Material:  
 
Books 

§ Database Management System (2Ed) by Raghu Ramakrishtan and Johannes 
Gehrke 

§ Database Systems: Design, Implementation, and Management (10Ed) by Carlos 
Coronel, Steven Morris, and Peter Rob (2012). Cengage Learning, Boston. ISBN-
13: 978-1-111-96960-8 

§ Database principles and design (3Ed) by Colin Ritchie (2008). Cengage Learning, 
London. ISBN-13: 978-1-84480-540-2. 

§ Database System, the complete book (2Ed) by Hector G. M., Jeffrey D. U., 
Jennifer W. (2009). Pearson Education Inc. New Jersey.	ISBN 0-13-606701-8 

§ Relational Theory for Computer Professionals by C. J. Date (2013). O’Reilly 
Media, Inc. Sebastopol. ISBN: 978-1-449-36943-9 

Online resources 
§ Database Management Systems Relational, Object-Relational and Object-

Oriented Data Models. Center for Objekt Teknology. Available online: 
http://www.cit.dk/COT/reports/reports/Case4/05-v1.1/cot-4-05-1.1.pdf 

§ http://www.help2engg.com/dbms/dbms-languages 
§ Database Management System by tutorialpoint. Available online 

https://www.tutorialspoint.com/dbms/dbms_tutorial.pdf 
 
Data: raw representation of unprocessed facts, figures, concepts or instruction. It 
can exist in any form, usable or not. Data are facts presented without relation to 
other things. E.g. It is raining 
 
Information: information is data that has been given meaning by way of relational 
connection. This "meaning" can be useful, but does not have to be. In computer 
parlance, a relational database makes information from the data stored within it. 
Information embodies the understanding of some sort. E.g. the temperature dropped 
to 15 degrees and then it started raining. 
 
DATABASE 
A Database is a shared, integrated computer structure that is repository to:  

-End-user data, that is, raw facts of interest to the end user 
-Metadata, or data about data describes of the data characteristics and the set 
of relationships that link the data found within the db.  

 
A database is a collection of data, typically describing the activities of one or more 
related organizations. For example, a university database might contain information 
about the following: 

§ Entities such as students, faculty, courses, and classrooms. 
§ Relationships between entities, such as students' enrollment in courses, 

faculty teaching courses, and the use of rooms for courses. 



 
Proper storage of data in a database will enhance efficient 

- Data Management 
- Data processing 
- Data retrieval 

 
Database System  
Refers to an organization of components that define and regulate the collection, 
storage, management from general management point of view, the DB system is 
composed of   

Ø Hardware  
Ø Software  
Ø People –system administrators: database systems operations  

§ DB administrators: manage the DBMS and ensure the DB is   
§ functioning properly        
§ DB designers  
§ System analysts and programmers design and implement the 

application programs 
§ end user 

Ø Procedures  
Ø Data 

 
DBMS: A database management system (DBMS) is a collection of programs that 
manages the database structure and controls access to the data stored in the 
database. In a sense, a database resembles a very well-organized electronic filing 
cabinet in which powerful software (the DBMS) helps manage the cabinet’s contents 
 
ADVANTAGES OF A DBMS 
 

§ Data independence: This is the technique that allow data to be changed 
without affecting the applications that process it. We can change the way the 
database is physically stored and accessed without having to make 
corresponding changes to the way the database is perceived by the user. 
Changing the way the database is physically stored and accessed is almost 
always to improve performance; and the fact that we can make such changes 
without having to change the way the database looks to the user means that 
existing application programs, queries, and the like can all still work after 
the change. Application programs should be as independent as possible from 
details of data representation and storage. The DBMS can provide an abstract 
view of the data to insulate application code from such details.  

§ Efficient data access: A DBMS deploys sophisticated techniques to store and 
retrieve data efficiently.  

§ Data integrity control: the DBMS can enforce integrity constraints on the 
data. For example, before inserting salary information for an employee, the 
DBMS can check that the department budget is not exceeded. Also, updating the 
status for supplier S1 to 200 will rejected, if status values are supposed 
never to exceed 100 

§ Security Control: the DBMS can enforce access controls that govern what 
data is visible to different classes of users.	Users are only allowed to perform 
an operation he or she is allowed to carry out on data. 

§ Concurrent access and crash recovery: A DBMS schedules concurrent 
accesses to the data in such a manner that users can think of the data as being 
accessed by only one user at a time. Further, the DBMS protects users from 
the effects of system failures. 

§ Reduced application development time: Clearly, the DBMS supports many 
important functions that are common to many applications accessing data 
stored in the DBMS. This, in conjunction with the high-level interface to the 
data, facilitates quick development of applications. Such applications are also 
likely to be more robust than applications developed from scratch because 



many important tasks are handled by the DBMS instead of being implemented by 
the application. 

 
DBMS Architecture 
The DBMS provides users with an abstract view of the data in it i.e. the system hides 
certain details of how the data is stored and maintained from users. A DBMS can be 
viewed as divided into levels of abstraction. A common architecture generally used 
is the ANSI/SPARC (American National Standards Institute - Standards Planning and 
Requirements Committee) model.  
The ANSI/SPARC model abstracts the DBMS into a 3-tier architecture as follows: 
External level 
Conceptual level  
Internal level 
 

 
ANSI/SPARC 3-tier DBMS architecture 
 
i. External level: The external level is the user’s view of the database and closest 

to the users. It presents only the relevant part of the DBMS to the user. E.g. A 
bank database stores a lot more information but an account holder is only 
interested in his/her account details such as the current account balance, 
transaction history etc. An external schema describes each external view. The 
external schema consists of the definition of the logical records and the 
relationships in the external view. In the external level, the different views may 
have different representations of the same data. 

ii. Conceptual level: At this level of database abstraction, all the database entities 
and relationships among them are included. Conceptual level provides the 
community view of the database and describes what data is stored in the database 
and the relationships among the data. In other words, the conceptual view 
represents the entire database of an organization. It is a complete view of the data 
requirements of the organization that is independent of any storage 
consideration. The conceptual schema defines conceptual view. It is also called 
the logical schema. There is only one conceptual schema per database. The figure 
shows the conceptual view record of a data base. 

iii. Internal level or physical level: The lowest level of abstraction is the 
internal level. It is the one closest to physical storage device. This level is also 
termed as physical level, because it describes how data are actually stored on the 
storage medium such as hard disk, magnetic tape etc. This level indicates how the 
data will be stored in the database and describe the data structures, file 
structures and access methods to be used by the database. The internal schema 
defines the internal level. The internal schema contains the definition of the 
stored record, the methods of representing the data fields and accessed methods 
used. The figure shows the internal view record of a database. 



 

 
 
 
DBMS LANGUAGES 
The workings of a DBMS is controlled by four different languages, they are 
 

Ø Data Definition Language (DDL):	Used by the DBA and database designers to 
specify the conceptual schema of a database. In many DBMSs, the DDL is also 
used to define internal and external schemas (views). In some DBMSs, separate 
storage definition language (SDL) and view definition language (VDL) are used 
to define internal and external schemas. SDL is typically realized via DBMS 
commands provided to the DBA and database designers. Some examples include: 

Ø CREATE - to create objects in the database 
Ø ALTER - alters the structure of the database 
Ø DROP - delete objects from the database 
Ø TRUNCATE - remove all records from a table, including all spaces 

allocated for the records are removed 
Ø COMMENT - add comments to the data dictionary 
Ø RENAME - rename an object 

 
Ø Data Manipulation Language (DML): these statements managing data within 

schema objects. They specify database retrievals and updates. DML commands 
(data sublanguage) can be embedded in a general-purpose programming 
language (host language), such as COBOL, C, C++, or Java. 

Ø A library of functions can also be provided to access the DBMS from a 
Ø programming language 
Ø Alternatively, stand-alone DML commands can be applied directly (called 

a query 
Ø language). 

Some examples in SQL include:  
Ø SELECT - Retrieve data from the a database 
Ø INSERT - Insert data into a table 



Ø UPDATE - Updates existing data within a table 
Ø DELETE - deletes all records from a table, the space for the records 

remain 
Ø MERGE - UPSERT operation (insert or update) 
Ø CALL - Call a PL/SQL or Java subprogram 
Ø EXPLAIN PLAN - explain access path to data 
Ø LOCK TABLE - control concurrency 

 
Ø Data Control Language (DCL): used for granting and revoking user access on 

a database 
Ø To grant access to user – GRANT 
Ø To revoke access from user – REVOKE 

 
Ø Transaction Control (TCL): Statements are used to manage the changes made 

by DML statements. It allows statements to be grouped together into logical 
transactions.  
 
Some examples include:  

Ø COMMIT - save work done 
Ø SAVEPOINT - identify a point in a transaction to which you can later roll 

back 
Ø ROLLBACK - restore database to original since the last COMMIT 
Ø SET TRANSACTION - Change transaction options like isolation level and 

what rollback segment to useIn practical data definition language, data 
manipulation language and data control languages are not separate 
language; rather they are the parts of a single database language such 
as SQL. 

 
Example 
 
Write the SQL code that will create the table structure for a table named EMP_1. 
This table is a subset of the EMPLOYEE table. The basic EMP_1 table structure is 
summarized in the following table. EMP_NUM is the primary key and JOB_CODE is the 
FK to JOB. 
 

Hint: Primary Key cannot contain null value  

 
 
CREATE TABLE EMP_1( 
EMP_NUM CHAR(6) NOT NULL, 
EMP_LNAME VARCHAR(15), 
EMP_FNAME VARCHAR(15), 
EMP_INITIAL CHAR(1), 
EMP_HIREDATE DATE, 
JOB_CODE CHAR(3), 
PRIMARY KEY (EMP_NUM), 
FOREIGN KEY(JOB_CODE) REFERENCES JOB (JOB_CODE) 
) ; 
 

Having created the table structure in (a), write the SQL code to enter the first two 
rows for the table EMP_1 below: 



 
 
INSERT INTO EMP_1   
(EMP_NUM, EMP_LNAME, EMP_FNAME, EMP_INITIAL, EMP_HIREDATE, JOB_CODE)  
VALUES  
("101", "News", "John", "G", "08-Nov-00", "502"),  
("102", "Senior", "David", "H", "12-Jul-89", "500"); 
 

Assuming the data shown in the EMP_1 table have been entered, write the SQL code 
that will list all attributes for a job code of 502. 

 
SELECT * FROM EMP_1  
WHERE JOB_CODE = ‘502’; 
 

Write the SQL code that will save the changes made to the EMP_1 table. 
 
COMMIT WORK; 
NB: WORK is optional. 

 
DBMS Data Model 
A data model is a notation for describing data or information. The description 
generally consists of three parts: 

i. Structure of the data: The data structures used to implement data in the 
computer are sometimes referred to, in discussions of database systems, as 
a physical data model.  

ii. Operations on the data: In database data models, there is usually a limited 
set of operations that can be performed but dba can describe database 
operations at a very high level, yet have the database management system 
implement the operations efficiently.  

iii. Constraints on the data. Database data models usually have a way to 
describe limitations on what the data can be. These constraints can range 
from the simple (e.g., “a day of the week is an integer between 1 and 7” or “a 
movie has at most one title”) to some very complex limitations. 

 
Traditionally, there are four DBMS. These four data models also represent the 
historical developments of the DBMS: 
 
Hierarchical Database Model 
This is the oldest DBMS data model. In this model, information is organized as a 
collection of inverted trees of records. The record at the root of a tree has zero or 
more child records; the child records, in turn, serve as parent records for their 
immediate descendants. This parent-child relationship recursively continues down 
the tree. The records consist of fields, where each field may contain simple data 
values (e.g. integer, real, text)., or a pointer to a record. The pointer graph is not 
allowed to contain cycles. Some combinations of fields may form the key for a record 
relative to its parent. Only a few hierarchical DBMSs support null values or 



variable-length fields. 

	 	
 Example of Hierarchical data model 
 
Applications can navigate a hierarchical database by starting at a root and 
successively navigate downward from parent to children until the desired record is 
found.  
Searching down a hierarchical tree is very fast since the storage layer for 
hierarchical databases use contiguous storage for hierarchical structures. All 
other types of queries require sequential search techniques. A DDL for hierarchical 
data model must allow the definition of record types, fields types, pointers, and 
parent-child relationships. And the DML must support direct navigation using the 
parent-child relationships and through pointers.  
Limitations 

Ø Hierarchical model only permits one to many relationship. The concept of 
Logical relationship is often used to circumvent this limitation. Logical 
relationship superimpose another set of connection between data items 
separate from the physical tree structure. This of course increases its 
complexity 

Ø Often a natural hierarchy does not exist and it is awkward to impose a parent-
child relationship. Pointers partially compensate for this weakness, but it is 
still difficult to specify suitable hierarchical schemas for large models and 
this means Programs have to navigate very close to the physical data structure 
level, implying that the hierarchical data model offers only very limited data 
independence. 

Ø Lack of ad hoc query capability placed burden on programmers to generate code 
for reports 

 
Network model:		
It represents complex data relationships more effectively than the hierarchical 
model. The major improvement is that the one-to-many limitation was removed; the 
models still views data in a hierarchical one-to-many structure but now record may 
have more than one parent. Network data models represent data in a symmetric 
manner, unlike the hierarchical data model (distinction between a parent and a 
child). Information is organized as a collection of graphs of record that are related 
with pointers. More flexible than a hierarchical data model and still permits 
efficient navigation. 



 
Example of network data model 
The records consist of lists of fields (fixed or variable length with maximum 
length), where each field contains a simple value (fixed or variable size). The 
network data model also introduces the notion of indexes of fields and records, sets 
of pointers, and physical placement of records. A DDL for network data models must 
allow the definition of record types, fields types, pointers and indexes. And the DML 
must allow navigation through the graphs through the pointers and indexes. 
Programs also navigates closely to the physical 
storage structures, implying that the network data model only supports limited data 
independence, and are therefore difficult to maintain as the data models evolve over 
time. 
 
Concepts introduced under the network model include: 

§ Schema: conceptual design of the entire database usually managed by the dba 
§ Sub-schema: virtual view of portions of the database visible to application 

programmers 
§ Data management language: enables definition of and access to the schema and 

sub-schema. It consist of DDL to construct the schema and DML to develop 
programs 

§ Data Definition Language 
Limitations  

Ø Cumbersome 
Ø Lack of ad hoc query capability placed burden on programmers to generate code 

for reports 
Ø Structural change in the database could produce havoc in all application 

programs 
 
The relational database Model 
 
Developed by E.F. Codd (IBM) in 1970, the relational data model has a mathematical 
foundation in relational algebra. The model is based on first-order predicate logic 
and defines a table as an n-ary relation. Data is organized in relations (two-
dimensional tables). Each relation contains a set of tuples (records). Each tuple 
contains a number of fields. A field may contain a simple value (fixed or variable 
size) from some domain (e.g. integer, real, text, etc.). 
 
Advantages of relational model 

§ Built-in multilevel integrity: Data integrity is built into the model at the field 
level to ensure the accuracy of the data; at the table level to ensure that 
records are not duplicated and to detect missing primary key values; at the 
relationship level to ensure that the relationship between a pair of tables is 
valid; and at the business level to ensure that the data is accurate in terms of 
the business itself. (Integrity is discussed in detail as the design process 
unfolds.) 



 
§ Logical and physical data independence from database applications: Neither 

changes a user makes to the logical design of the database, nor changes a 
database software vendor makes to the physical implementation of the 
database, will adversely affect the applications built upon it. 
 

§ Guaranteed data consistency and accuracy: Data is consistent and accurate due 
to the various levels of integrity you can impose within the database. (This will 
become quite clear as you work through the design process.) 
 

§ Easy data retrieval: At the user’s command, data can be retrieved either from a 
particular table or from any number of related tables within the database. 
This enables a user to view information in an almost unlimited number of ways. 

 
One commonly perceived disadvantage of the relational database was that software 
programs based on it ran very slowly.  
 
Some definitions 
 
RELATION: a relation, as defined by E. F. Codd, is a set of tuples (d1, d2, ..., dn), where 
each element dj is a member of Dj, a data domain, for each j=1, 2, ..., n. A data domain 
is simply a data type. It specifies a data abstraction: the possible values for the data 
and the operations available on the data. For example, a String can have zero or more 
characters in it, and has operations for comparing strings, concatenating string, and 
creating strings. A relation is a truth predicate. It defines what attributes are 
involved in the predicate and what the meaning of the predicate is. In relational data 
model, relations are represented in the table format. This format stores the 
relation among entities. A table has rows and columns, where rows represent 
records and columns represent the attributes. E.g.  
 

 
 
TUPLE: A single row of a table, which contains a single record for that relation is 
called a tuple. A tuple has attribute values which match the required attributes in 
the relation. The ordering of attribute values is immaterial.	Every tuple in the body 
of a given relation is required to conform to the heading (attribute) of that relation, 
i.e. it contains exactly one value, of the applicable type, for each attribute, and 
nothing else besides 
 
ATTRIBUTE: The columns of a relation are named by attributes. Attributes appear at 
the tops of the columns. Usually, an attribute describes the meaning of entries in 
the column below. For instance, the column with attribute length holds the length, 
in minutes, of each movie. 
 
ATTRIBUTE DOMAIN: Every attribute has some predefined value scope, known as 
attribute domain 
 
ATTRIBUTE VALUE/INSTANCE: An attribute value is the value for an attribute in a 
particular tuple. An attribute value must come from the domain that the attribute 
specifies. Most relational DBMS allows NULL attribute values. Each attribute value 
in a relational model must be atomic i.e. it must be of some elementary type such as 
integer or string. It is not permitted for a value to be a record structure, set, list, 
array, or any other type that reasonably can have its values broken into smaller 
components. 
 
SCHEMAS: The name of a relation and the set of attributes for a relation is called 
the schema for that relation. The schema is depicted by the relation name followed 



by a parenthesized list of its attributes. Thus, the schema for relation Movies above 
is 

Movies (title , year, length, genre) 
In the relational model, a database consists of one or more relations. The set of 
schemas for the relations of a database is called a relational database schema, or 
just a database schema. 
 
Data Types: All attributes must have a data type. The following are the primitive 
data types that are supported by SQL (Structured Query Language) systems.  

i. Character strings of fixed or varying length. The type CHAR(n) denotes a fixed-
length string of up to n characters. VARCHAR(n) also denotes a string of up 
to n characters. The difference is implementation-dependent; typically CHAR 
implies that short strings are padded to make n characters, while VARCHAR 
implies that an endmarker or string-length is used. Normally, a string is 
padded by trailing blanks if it becomes the value of a component that is a fixed-
length string of greater length. For example, the string ’foo’ if it became the 
value of a component for an attribute of type CHAR(5), would assume the value 
’foo  ’ (with two blanks following the second o). 

ii. Bit strings of fixed or varying length. These strings are analogous to fixed 
and varying-length character strings, but their values are strings of bits 
rather than characters. The type BIT (n) denotes bit strings of length n, while 
BIT VARYING (n) denotes bit strings of length up to n. 

iii. The type BOOLEAN denotes an attribute whose value is logical. The possible 
values of such an attribute are TRUE, FALSE. 

iv. The type INT or INTEGER (these names are synonyms) denotes typical integer 
values. The type SHORTINT also denotes integers, but the number of bits 
permitted may be less, depending on the implementation (as with the types int 
and short int in C).	 

v. Floating-point numbers can be represented in a variety of ways. We may use the 
type FLOAT or REAL (these are synonyms) for typical floating point numbers. 
A higher precision can be obtained with the type DOUBLE PRECISION. We can 
also specify real numbers with a fixed decimal point. For example, DECIMAL(n,d) 
allows values that consist of n decimal digits, with the decimal point assumed 
to be d positions from the right. Thus, 0123.45 is a possible value of type 
DECIMAL(6,2). NUMERIC is almost a synonym for DECIMAL, although there are 
possible implementation-dependent differences. 

vi. Dates and times can be represented by the data types DATE and TIME, 
respectively. These values are essentially character strings of a special form. 
We may, in fact, coerce dates and times to string types, and we may do the 
reverse if the string “makes sense” as a date or time. 

 
A relational database Schema is depicted by stating both the attributes and their 
datatype: 
Movies ( 
title CHAR(IOO), 
year INT, 
length INT, 
genre CHAR(10), 
studioName CHAR(30), 
producer INT 
) 
 
Relation instance: A finite set of tuples in the relational database system 
represents relation instance. Relation instances do not have duplicate tuples. 
 
{  

<Person SSN# = "123-45-6789" Name = "Art Larsson" City = "San Francisco">, 
<Person SSN# = "231-45-6789" Name = "Lino Buchanan" City = "Philadelphia">, 
<Person SSN# = "321-45-6789" Name = "Diego Jablonski" City = "Chicago">  

} 
It is more common and concise to show a relation value as a table. All ordering within 
the table is artificial and meaningless. 



 
Design theory for Relational Database 
A common problem with schema design involve trying to combine too much into one 
relation thus leading to redundancy. Thus, improvements to relational schemas pay 
close attention to eliminating redundancy. The theory of “dependences” is a well-
developed theory for relational databases providing guidelines on how to develop 
good schema and eliminate flaws if any. The first concept we need to consider is 
Functional Dependency (FD). 
 
Functional Dependency (FD) 
FUNCTIONAL DEPENDENCY: the term functional dependence can be defined most 
easily this way: 
Definition:  

Let A and B be subsets of the attribute of a relation R. Then the functional 
dependency (FD)		

A → B	
holds in R if and only if, whenever two tuples of R have the same value for A, 
they also have the same value for B. A and B are the determinant and the 
dependent, respectively, and the FD overall can be read as “A functionally 
determines B” or “B is functionally dependent on A,” or more simply just as 

A → B	
 
If A and B are composite, then we have 

A1, A2, …, An → B1, B2, …, Bm 
 
 This is also equivalent to 
  A1, A2, …, An → B1, A1, A2, …, An → B2, ..., A1, A2, …, An → Bm 

 

  
 
 The attribute(s) B is functionally dependent on attributes(s)A, if A determines B.  

e.g. STU_PHONE is functionally dependent on STU_NUM.  
 
STU_NUM is not functionally dependent on STU_PHONE because the STU_PHONE 
value 2267 is associated with two STU_NUM values: 324274 and 324291. (This could 
happen when roommates share a single land line phone number.)  
 
The functional dependence definition can be generalized to cover the case in which 
the determining attribute values occur more than once in a table.  
 
Functional dependence can then be defined this way: 

 
Attribute B is functionally dependent on A if all of the rows in the table that 
agree in value for attribute A also agree in value for attribute B. 

 
RELATION KEYS: The key’s role is based on a concept known as determination. I.e. 
the statement “A determines B” indicates that if you know the value of attribute A, 
you can look up (determine) the value of attribute B. E.g.: 



an invoice number identifies all of the invoice attributes such as invoice date and 
the customer name. 
if we know STU_NUM in a STUDENT table we can look up (determine) student’s last 
name, grade point average, phone number, etc.  
 

 
Table name: Student 
 
The shorthand notation for “A determines B” is  

A → B.  
 
If A determines B, C, and D, we write  

A → B, C, D.  
 
For the student example we can write: 

STU_NUM → STU_LNAME, STU_FNAME, STU_INIT, STU_DOB, STU_TRANSFER 
 
In contrast, STU_NUM is not determined by STU_LNAME because it is quite possible 
for several students to have the last name Smith. 
Proper understanding of the principle of determination is vital to the understanding 
of a central relational database concept known as functional dependence (FD).  
 
Definitions 
Key Attribute(s): We say a set of one or more attributes {A1, A2, ..., An} is a key for 
a relation R if: 

i. Those attributes functionally determine all other attributes of the relation. 
That is, it is impossible for two distinct tuples of R to agree on all of A1, A2, 
..., An (uniqueness). 

ii. No proper subset of {A1, A2, ..., An} functionally determines all other 
attributes of R; i.e., a key must be minimal.  

 
When a key consists of a single attribute A, we often say that A (rather than {A}) is 
a key. An attribute that is part of a key is called key attribute. 
Consider the Relation Movies below: 
 

 
 
Attributes {title, year, starName} form a key for the relation Movies because it meets 
the two conditions:  
Condition 1: 

Do they functionally determine all the other attributes? Yes 
Condition 2: 

Do any proper subset of {title, year, starName} functionally determines all 
other attributes? 

{title, year} do not determine starName thus {title, year} is not a key. 
{year, starName} is not a key because we could have a star in two movies 
in the same year; therefore		

{Year, starName} → title is not an FD.  



{title, starName} is not a key, because two movies with the same title, made 
in different years, can have a star in common. 
Therefore, no proper subset of {title, year, starName} functionally 
determines all other attributes 

Super Key (shortened: super set of keys): An attribute or a combination of attributes 
that is used to identify the records uniquely is known as Super Key. It is to be noted 
that some superkeys are not (minimal) keys. Note that every superkey satisfies the 
first condition of a key: it functionally determines all other attributes of the 
relation. However, a superkey need not satisfy the second condition: minimality. A 
table can have many Super Keys. E.g. of Super Key 

§ ID 
§ ID, Name 
§ ID, Address 
§ ID, Department_ID 
§ ID, Salary 
§ Name, Address 

 
Candidate Key: It can be defined as minimal Super Key or irreducible Super Key. In 
other words an attribute or a combination of attribute that identifies the record 
uniquely but none of its proper subsets can identify the records uniquely. E.g. of 
Candidate Key 

Code 
Name, Address 

 
Primary Key: A Candidate Key that is used by the database designer for unique 
identification of each row in a table is known as Primary Key. A Primary Key can 
consist of one or more attributes of a table. E.g. of Primary Key - Database designer 
can use one of the Candidate Key as a Primary Key.  

In this case we have “Code” and “Name, Address” as Candidate Key, 
The designer may prefer “Code” as the Primary Key as the other key is the 
combination of more than one attribute. 

Null values should never be part of a primary key, they should also be avoided to 
the greatest extent possible in other attributes too. A null is no value at all. It does 
not mean a zero or a space. There are rare cases in which nulls cannot be reasonably 
avoided when you are working with non-key attributes. For example, one of an 
EMPLOYEE table’s attributes is likely to be the EMP_INITIAL. However, some 
employees do not have a middle initial. Therefore, some of the EMP_INITIAL values 
may be null. Null can also exist because of the nature of the relationship between 
two entities. Conventionally, the existence of nulls in a table is often an indication 
of poor database design. Nulls, if used improperly, can create problems because they 
have many different meanings. For example, a null can 
represent: 

An unknown attribute value. 
A known, but missing, attribute value. 
A “not applicable” condition. 

 
Foreign Key: A foreign key is an attribute or combination of attributes in one base 
table that points to the candidate key (generally it is the primary key) of another 
table. The purpose of the foreign key is to ensure referential integrity of the data 
i.e. only values that are supposed to appear in the database are permitted. E.g.  

Consider two table 
Employee (EmployeeID, EmployeeName, DOB, DOJ, SSN, DeptID, MgrID) and 
DeptTbl (Dept_ID, Dept_Name, Manager_ID, Location_ID)  
 
Dept_ID is the primary key in Table DeptTbl, the DeptID attribute of table 
Employee (dependent or child table) can be defined as the Foreign Key as it can 
reference to the Dept_ID attribute of the table DeptTbl (the referenced or 
parent table), a Foreign Key value must match an existing value in the parent 
table or be NULL. 

 



Composite Key: If we use multiple attributes to create a Primary Key then that 
Primary Key is called Composite Key (also called a Compound Key or Concatenated 
Key). 
 
Full functional dependency (FFD): If the attribute (B) is functionally dependent 
on a composite key (A) but not on any subset of that composite key, the attribute (B) 
is fully functionally dependent on (A). 
 
Alternate Key: Alternate Key can be any of the Candidate Keys except for the 
Primary Key. 
 
Secondary Key: The attributes that are not even the Super Key but can be still used 
for identification of records (not unique) are known as Secondary Key. 
E.g. of Secondary Key can be Name, Address, Salary, Department_ID etc. as they can 
identify the records but they might not be unique. 
 

 
An Example of relational db with primary key and foreign key 
 
Exercise 
Suppose R is a relation with attributes A1, A2, ..., An. As a function of n, tell how 
many superkeys R has, if: 
a) The only key is A1. 
b) The only keys are A1 and A2 
c) The only keys are {A1, A2} and {A3, A4} 
d) The only keys are {A1, A2} and {A1, A3} 
 
Rules About Functional Dependencies 
 
These rules guide us on how we can infer a functional dependency from other given 
FD’s. 
E.g., given that a relation R (A, B, C) satisfies the FD’s 
A —> B and B —> C,  
then we can deduce that R also satisfies the FD  
A —> C. 
 
Proof: 
Consider two tuples of R that agree on A 
 
Let the tuples agreeing on attribute A be (a, b1, c1) and (a, b2, c2) 
Since R satisfies A → B, and these tuples agree on A, they must also agree on B. That 
is, b1 = b2 



The tuples are now (a, b, c1) and (a, b, c2), where b is both b1 and b2.  
Similarly, since R satisfies B → C, and the tuples agree on B, they agree also on C.  
Thus, c1= c2; i.e., the tuples do agree on C.  
 
We have proved that any two tuples of R that agree on A also agree on C, and that is 
the FD 
A → C. 
This rule is called the transitive rule 
 
The Splitting/Combining Rule 
Recall that the FD: 
A1, A2, …, An → B1, B2, …, Bm 
is equivalent to the set of FD’s: 
A1, A2, …, An → B1, A1, A2, …, An → B2, ..., A1, A2, …, An → Bm 
 
In other words, we may split attributes on the right side so that only one attribute 
appears on the right of each FD. Likewise, we can replace a collection of FD’s having 
a common left side by a single FD with the same left side and all the right sides 
combined into one set of attributes. In either event, the new set of FD’s is equivalent 
to the old. The equivalence noted above can be used in two ways. 

§ We can replace an FD  
A1, A2, …, An → B1, B2, …, Bm by a set of FD’s  
A1, A2, …, An → Bi for i = 1, 2, ..., m  
We call this transformation the splitting rule. 

§ We can replace a set of FD’s  
A1, A2, …, An → Bi for i = 1, 2, ..., m by the single FD  
A1, A2, …, An → B1, B2, …, Bm.  
We call this transformation the combining rule. 

 
E.g. the set of FD’s: 

title year → length 
title year → genre 
title year → studioName 

is equivalent to the single FD: 
title year → length, genre, studioName 

 
The splitting/ combining rule is stated as follows: 
Suppose we have two tuples that agree in A1, A2, ..., An. As a single FD, we would 
assert “then the tuples must agree in all of B1, B2, ..., Bm.” As individual FD’s, we 
assert “then the tuples agree in B1, and they agree in B2, and, ..., and they agree in 
Bm.”  
 
Trivial-dependency rule. 
 
Trivial Functional Dependencies: If a functional dependency (FD) α → β holds in 
Relation R, then the term trivial is attached to the dependency if it is satisfied by 
all possible r(R)  
i.e. α → β is trivial if β ⊆ α or β ∪ α = R  
where β is a subset of α, then it is called a trivial FD.  
e.g.  
title, year → title 
title → title 
are both trivial FD 
 
There is an intermediate situation in which some, but not all, of the attributes on 
the right side of an FD are also on the left. This FD is not trivial. 
 
Non-trivial: If an FD X → Y holds, where Y is not a subset of X, then it is called a 
non-trivial FD. 



 
This can be simplified by removing from the right side of an FD those attributes that 
appear on the left. That is: The FD  
A1, A2, …, An → B1, B2, …, Bm is equivalent to 
A1, A2, …, An → C1, C2, …, Ck 
where the C’s are all those B’s that are not also A’s. 
 
Completely non-trivial: If an FD X → Y holds, where x intersect Y = Φ, it is said to be 
a completely non-trivial FD. 
 

 
Trivial dependency rule 
 
Computing the Closure of Attributes 
 
Given a set a = {A1, A2, ..., A n} of attributes of R and a set of functional dependencies 
FD, we need a way to find all of the attributes of R that are functionally determined 
by a. This set of attributes is called the closure of a under F and is denoted a+. 
Finding a+ is useful because:  
 

§ if a+ = R, then a is a superkey for R  
§ With closure we can find all FD’s easily 

- To check if X → A 
- Compute X+ 
- Check if A ∈ X 

§ if we find a+ for all a	Í R, we've computed F+ (except that we'd need to use 
decomposition to get all of it). 

 
Formal definition of closure:  
Suppose a	=	{A1, A2, ..., An} is a set of attributes and S is a set of FD’s. The closure of 
a under the FD’s in S is the set of attributes B such that every relation that satisfies 
all the FD’s in set S also satisfies A1, A2, …, An → B. That is, A1, A2, …, An → B 
follows from the FD’s of S.  
 
We denote the closure of a set of attributes A1, A2, …, An by  
{A1, A2, ..., An}+.  
Note that A1, A2, ..., An are always in {A1, A2, …, An}+ because the FD A1, A2, …, An → 
Ai is trivial when i is one of 1,2,... , n. 
 



 
The figure above illustrates the closure process: 
Starting with the given set of attributes, we repeatedly expand the set by adding the 
right sides of FD’s as soon as we have included their left sides. Eventually, we 
cannot expand the set any further, and the resulting set is the closure. 
An algorithm for computing a+: 
 
 result := a 
 repeat 
     temp := result 
     for each functional dependency  b ® g  in F do 

        if  b Í  result then 
           result := result È g 
 until temp = result 
 
Example:  
Consider a relation with attributes A, B, C, D, E, and F. Suppose that this relation 
has the FD’s  
AB → C, BC → AD, D → E, and CF → B.  
What is the closure of {A, B}? 
 
Solution 
First, split BC → AD into BC → A and BC → D.  
 
Result = {A, B}.  
For AB → C  

AB Í		Result, so we have  
Result = Result È C i.e. Result = {A, B, C}. 
 

For BC → C and BC → D  
BC Í	Result, so we have 
Result = Result È A and D i.e., Result = {A, B, C, D}  

 
For D → E  

D Í	Result, so we have 
Result = Result È E i.e. Result = {A, B, C, D, E}  
 

No more changes to Result are possible, thus, {A, B}+ = {A, B, C, D, E}. 
 
By computing the closure of any set of attributes, we can test whether any given FD  
A1, A2, …, An → B follows from a set of FD’s S.  
First compute {A1, A2, …, An}+ using the set of FD’s S. If B is in {A1, A2, …, An}+, then 
A1, A2, …, An → B does follow from S, and if B is not in {A1, A2, …, An}+, then this FD 
does not follow from S.  



More generally, A1, A2, …, An → B1, B2, …, Bm follows from set of FD’s S if and only 
if all of B1, B2, ..., Bm are in {A1, A2, …, An}+ 
 
Example: 
Consider the relation and FD’s in the example above, Suppose we wish to test whether 
AB → D follows from these FD’s. We compute {A, B}+, which is {A, B, C, D, E}. Since D 
is a member of the closure, we conclude that AB → D does follow. 
On the other hand, consider the FD  
D → A. To test whether this FD follows from the given FD’s, first compute {D}+.  
{D}+ = {D, E}. Since A is not a member of {D, E}, we conclude that D → A does not follow. 
 
 
 
Armstrong's Axioms 
 
If F is a set of functional dependencies then the closure of F, denoted as F+, is the 
set of all functional dependencies logically implied by F. Armstrong's Axioms are a 
set of rules, that when applied repeatedly, generates a closure of functional 
dependencies. 
 

§ Reflexivity / reflexive rule: If {B1, B2, ..., Bm} Í	 {A1, A2, ..., An}, then  
A1, A2, …, An → B1, B2, …, Bm. These are what we have called trivial FD’s. 

§ Augmentation rule: If A1A2 … An → B1B2 … Bm, then 
A1A2 … AnC1C2 … Ck → B1B2, … BmC1C2 … Ck for any set of attributes C1, 
C2, ..., Ck  
Since some of the C ’s may also be A’s or B’s or both, we should eliminate from 
the left side duplicate attributes and do the same for the right side. 

§ Transitivity rule: If A1, A2, …, An → B1, B2, …, Bm and B1, B2, …, Bm → C1, C2, 
…, Ck hold in relation R, then A1, A2, …, An → C1, C2, …, Ck also holds in R. 

 
If some of the C ’s are among the A’s, we may eliminate them from the right side 
by the trivial-dependencies rule 
 
To test whether A1, A2, …, An → C1, C2, …, Ck holds,  
we need to compute the closure  
{A1, A2, ..., An}+ with respect to the two given FD’s.  
The FD A1, A2, …, An → B1, B2, …, Bm tells us that all of B1, B2, ..., B m are in 
{A1, A2, ..., A n}+.  
Then, we can use the FD B1, B2, …, Bm → C1, C2, …, Ck to add C1, C2, ..., Ck to 
{A1, A2, ..., An}+.  
Since all the C’s are in {A1, A2, ..., An}+ we conclude that  
A1, A2, …, An → C1, C2, …, Ck holds for any relation that satisfies both  
A1, A2, …, An → B1, B2, …, Bm and B1, B2, …, Bm → C1, C2, …, Ck. 

 
Additional rules:  
 

§ Union: If X → Y and X → Z, then X → Y Z 
§ Pseudotransitivity: If X → Y and W Y → Z, then W X → Z 
§ Composition: If X → Y and Z → W, then XZ → Y W 

 
 
Transitive dependence: an attribute Y is said to be transitively dependent on 
attribute X if Y is functionally dependent on another attribute Z which is 
functionally dependent on X. 
 
Closure of FD’s set 
Given Relation R and a set of FD’s F that holds in R: 
The closure of F in R (denoted F+) is the set of all FD’s F in R that are logically 
implied by F i.e. s the set of all regular FDs that can be derived from F 



 
algorithm (F) 
 /* F is a set of FDs */ 
F+ = ∅  
for each possible attribute set X  

Compute the closure X+ of X on F  
for each attribute A ∈ X+  

add to F+ the FD: X → A  
return F+ 
 
Example: 
Assume there are 4 attributes A, B, C, D and that F = {A → B, B → C}. to compute F+ we 
first get: 
A+ = AB+ = AC+ = ABC+ = {A, B, C} 
B+ = BC+ = {B, C} 
C+ = {C} 
D+ = {D} 
AD+ = {A, D} 
BC+ = {B, C} 
BD+ = BCD+ = {B, C, D} 
ABD+ = ABCD+ = {A, B, C, D} 
ACD+ = {A, C, D} 
 
Exercise  
Consider a relation with schema R (A, B, C, D) and FD’s AB → C, D → D and D → A. 

i. What are all the nontrivial FD’s that follow from the given FD’s? You should 
restrict yourself to FD’s with single attributes on the right side. 

ii. What are all the keys of R? 
iii. What are all the superkeys for R that are not keys? 

 
Relational Set Operators 
The Relational Data Model is designed in such ways that data may be processed with 
mathematical 
operations.	Data in relational tables are of little use unless they are manipulated 
to yield meaningful information. Relational Algebra forms the theoretical basis for 
manipulating table content using eight operators; four relational operators and 
four set operators. Relational operators take one or two relations as inputs and 
return relations as the result while set operators take one or two sets as inputs 
and return sets as the result. 
 
	Four relational operations 

Ø Project 
Ø Select 
Ø Join 
Ø Division 

Four set operations 
Ø Union 
Ø Difference 
Ø Intersection 
Ø Cartesian Product 

 
Very few DBMSs are capable of supporting all eight relational operators. To be 
considered minimally relational, the DBMS must support the key relational 
operators SELECT, PROJECT, and JOIN.  
 

1. SELECT, also known as RESTRICT, yields values for all the rows found in a 
table that satisfy a given condition. SELECT yields a horizontal subset of a 
table. 

 



 
2. PROJECT yields all values for selected attributes. PROJECT yields a vertical 

subset of a table 
 

 
 

3. UNION: combines all rows from two or more tables, excluding duplicate rows. 
In order to be used in a UNION, the tables must be UNION compatible, that is: 

Ø The relations must all have the same number of attributes. 
Ø Corresponding columns must all have identical data types and lengths. 

When these criteria are met, the tables are said to be union compatible. 
 

 
 

4. INTERSECT: yields only the rows that appear in both tables. As with UNION, 
the tables must be union-compatible to yield valid results.  
 

 
 

5. DIFFERENCE: yields all rows in one table that are not found in the other table. 
As with the UNION, the tables must be UNION-compatible to yield valid results. 
 



 
 

6. PRODUCT: yields all possible pairs of rows from two tables- also known as 
Cartesian product. Therefore, if one table has six rows and the other table 
has three, the PRODUCT yields a list composed of 6 x 3= 18 rows. 
 

 
 

7. JOIN: Joins two tables together using a shared key usually either the primary 
key or foreign key. JOIN allows the use of independent tables linked by common 
attributes. Join is a fundamental concept in Relational database. A join can 
either be inner join or outer join. An inner join is a join that only returns 
matched records from the tables that are being joined e.g. natural Join, 
equijoin, theta join. In an outer join, the matched pairs would be retained, and 
any unmatched values in the other table would be left null. We look at types 
of join below: 

§ Natural join (Inner Join): A natural join links tables by selecting only 
the rows with common values in their common attribute(s). A natural join 
is the result of a three-stage process:  
a. PRODUCT of the tables is created 
b. SELECT is performed on the output of Step a) to yield only the rows 

whose values are equal.  
c. A PROJECT is performed on the results of Step b to yield a single copy 

of each attribute, thereby eliminating duplicate columns. The final 
outcome of a natural join yields a table that does not include 
unmatched pairs and provides only copies of the matches. 

 
The two tables to be used for JOIN. In the following example,  

SELECT*  
FROM Customer  
NATURAL JOIN Agent 

  
 Note a few crucial features of the natural join operation: 

Ø If no match is made between the table rows, the new table does not 
include the unmatched row. In that case, neither AGENT_CODE 421 nor 
the customer whose last name is Smithson is included. Smithson’s 
AGENT_CODE 421 does not match any entry in the AGENT table. 



Ø The column on which the join was made—that is, AGENT_CODE—occurs 
only once in the new table. 

Ø If the same AGENT_CODE were to occur several times in the AGENT table, 
a customer would be listed for each match. For example, if the 
AGENT_CODE 167 were to occur three times in the AGENT table, the 
customer named Rakowski, who is associated with AGENT_CODE 167, 
would occur three times in the	resulting table. (A good AGENT table 
cannot, of course, yield such a result because it would contain unique 
primary key values.) 

 
Step 1: Cartesian product of the 2 tables 
 

 
Step 2: SELECT yield only the rows for which the AGENT_CODE values are 
equal. The common columns are referred to as the join columns 
 

 
Step 3: PROJECT eliminates duplicate columns to yield only AGENT_CODE 
 

§ Equijoin, links tables on the basis of an equality condition that compares 
specified columns of each table. The outcome of the equijoin does not 
eliminate duplicate columns, and the condition or criterion used to join 
the tables must be explicitly defined. The equijoin takes its name from 
the equality comparison operator (=) used in the condition. E.g. 

SELECT*  
FROM Customer  
JOIN Agent on (AGENT_CODE = CUSTOMER.AGENT_CODE) 

 
§ Theta join: If any other comparison operator such as (<, >, …) is used, the 

join is called a theta join.  



SELECT*  
FROM Customer  
JOIN Agent on (AGENT_CODE > CUSTOMER.AGENT_CODE) 

  
§ Outer Join: In an outer join, the matched pairs would be retained, and any 

unmatched values in the other table would be left null. It is an easy 
mistake to think that an outer join is the opposite of an inner join. 
However, it is more accurate to think of an outer join as an “inner join 
plus.” The outer join still returns all of the matched records that the 
inner join returns, plus it returns the unmatched records from one of 
the tables. The SQL OUTER JOIN operator (+) is used only on one side of 
the join condition only. The subtypes of OUTER JOIN are: 

Ø Left outer join or left join 
Ø Right outer join or right join 
Ø Full outer join 

Syntax 
Select *  
FROM table1, table2  
WHERE conditions [+]; 

 
§ The LEFT JOIN (specified with the keywords LEFT JOIN and ON) joins two 

tables and fetches all matching rows of two tables for which the sql-
expression is true, plus rows from the first table that do not match any 
row in the second table. 
 
Left Join: Syntax 

SELECT * 
FROM table1 
LEFT [OUTER] JOIN table2 
ON table1.column_name=table2.column_name; 

 

 
Pictorial representation of Left join 
 
E.g.  

SELECT * 
FROM CUSTOMER 
LEFT OUTER JOIN AGENT 
ON CUSTOMER.AGENT_CODE = AGENT_CODE 

 

 
Left outer join or Left Join 
 

§ The RIGHT JOIN, joins two tables and fetches rows based on a condition, 
which are matching in both the tables ( before and after the JOIN clause 



mentioned in the syntax below), and the unmatched rows will also be 
available from the table written after the JOIN clause ( mentioned in the 
syntax below). 
 
Syntax 

SELECT * 
FROM table1 
RIGHT [OUTER] JOIN table2 
ON table1.column_name=table2.column_name; 

 
Pictorial representation of Right Join 
 
E.g.  

SELECT * 
FROM CUSTOMER 
RIGHT OUTER JOIN AGENT 
ON CUSTOMER.AGENT_CODE = AGENT_CODE 

 

 
Right Join 
 

§ Full outer join: the FULL OUTER JOIN combines the results of both left 
and right outer joins and returns all (matched or unmatched) rows from 
the tables on both sides of the join clause. 
 
Syntax 

SELECT * 
FROM table1 
FULL OUTER JOIN table2 
ON table1.column_name=table2.column_name; 
 

§ ON table1.column_name=table2.column_name;More specifically, if an 
outer join is produced for tables CUSTOMER and AGENT, two scenarios 
are possible 
 

8. The DIVIDE operation uses one single-column table (e.g., column “a”) as the 
divisor and one 2-column table (i.e., columns “a” and “b”) as the dividend. The 
tables must have a common column (e.g., column “a”). The output of the DIVIDE 
operation is a single column with the values of column “a” from the dividend 
table rows where the value of the common column (i.e., column “a”) in both 
tables matches. 



 

 
Divide operation 
 

Relationships within the Relational Database 
Relationships are classified as: one-to-one (1:1), one-to-many (1:M), and many-to-many 
(M:N or M:M). In developing a good database designs, we must focus on the following 
points: 

Ø The 1:M relationship is the relational modeling ideal. Therefore, this 
relationship type should be the norm in any relational database design. 

Ø The 1:1 relationship should be rare in any relational database design. 
Ø M:N relationships cannot be implemented as such in the relational model. We 

will later consider how any M:N relationship can be changed into two 1:M 
relationships. 

 
The 1:M Relationship 
 

  
The 1:M relationship between PAINTER and PAINTING 
 



 
The implemented 1:M relationship between PAINTER and PAINTING 
 
The one-to-many (1:M) relationship is easily implemented in the relational model by 
putting the primary key of the 1 side in the table of the many side as a foreign key. 

 
The 1:M relationship between COURSE and CLASS 
 

 
The implemented 1:M relationship between COURSE and CLASS 
 
The 1:1 relationship: As the 1:1 label implies, in this relationship, one entity can be 
related to only one other entity, and vice versa. For example, one department chair—



a professor—can chair only one department, and one department can have only one 
department chair.  
 
The entities PROFESSOR and DEPARTMENT thus exhibit a 1:1 relationship.  
 

 
The 1:M relationship between PROFRSSOR and DEPARTMENT 
 
If we the examine the PROFESSOR and DEPARTMENT tables, we note some important 
features: 
§ Each professor is a College employee; thus, the professor identification is 

through the EMP_NUM. (However, note that not all employees are professors—
there’s another optional relationship.) 

§ The 1:1 PROFESSOR chairs DEPARTMENT relationship is implemented by having 
the EMP_NUM as foreign key in the DEPARTMENT table. Note that the 1:1 
relationship is treated as a special case of the 1:M relationship in which the 
“many” side is restricted to a single occurrence. In this case, DEPARTMENT 
contains the EMP_NUM as a foreign key to indicate that it is the department that 
has a chair.  

§ Also, note that the PROFESSOR table contains the DEPT_CODE foreign key to 
implement the 1:M DEPARTMENT employs PROFESSOR relationship. This is a good 
example of how two entities can participate in two (or even more) relationships 
simultaneously. The preceding “PROFESSOR chairs DEPARTMENT” example 
illustrates a proper 1:1 relationship. In fact, the use of a 1:1 relationship 
ensures that two entity sets are not placed in the same table when they should 
not be. However, the existence of a 1:1 relationship sometimes means that the 
entity components were not defined properly. It could indicate that the two 
entities actually belong in the same table! As rare as 1:1 relationships should 
be, certain conditions absolutely require their use. One such condition is the 
concept called generalization hierarchy, which is a powerful tool for improving 
database designs under specific conditions to avoid a proliferation of nulls. One 
of the characteristics of generalization hierarchies is that they are implemented 
as 1:1 relationships. 
 
Table name: PROFESSOR 
Primary key: EMP_NUM 
Foreign key: DEPT_CODE 



 
 
The M:N Relationship: A many-to-many (M:N) relationship is not supported directly 
in the relational environment. However, M:N relationships can be implemented by 
creating a new entity in 1:M relationships with the original entities. 
 
To explore the many-to-many (M:N) relationship, consider a rather typical college 
environment in which each STUDENT can take many CLASSes, and each CLASS can 
contain many STUDENTs. The ER model for this M:N relationship is below: 
The ERM’s M:N relationship between STUDENT and CLASS 

 
 
Note the features of the ERM above: 

§ Each CLASS can have many STUDENTs, and each STUDENT can take many 
CLASSes. 

§ There can be many rows in the CLASS table for any given row in the STUDENT 
table, and there can be many rows in the STUDENT table for any given row in 
the CLASS table. 

 
To examine the M:N relationship more closely, imagine a small college with two 
students, each of whom takes three classes. The table below shows the enrollment 
data for the two students. 



 
Sample Student Enrollment Data 

 
 
Table name: STUDENT 
Primary key: STU_NUM 
Foreign key: none 

 
 
Given the data relationship and the sample data in the table above, it can be wrongly 
assumed that M:N relationship can be implemented by simply adding a foreign key in 
the many side of the relationship that points to the primary key of the related table. 
This not correct 

§ The tables will create many redundancies. For example, note that the STU_NUM 
values occur many times in the STUDENT table. In a real-world situation, 
additional student attributes such as address, classification, major, and home 
phone would also be contained in the STUDENT table, and each of those 
attribute values would be repeated in each of the records shown here. 
Similarly, the CLASS table contains many duplications: each student taking the 
class generates a CLASS record. The problem would be even worse if the CLASS 
table included such attributes as credit hours and course description. 

§ Given the structure and contents of the two tables, the relational operations 
become very complex and are likely to lead to system efficiency errors and 
output errors. 

 
The problems inherent in the many-to-many (M:N) relationship can easily be avoided 
by creating a 
composite entity (also referred to as a bridge entity or an associative entity). 
Because such a table is used to link the tables that were originally related in an 
M:N relationship, the composite entity structure includes—as foreign keys—at least 
the primary keys of the tables that are to be linked. The database designer can then 
define the composite table’s primary key either by: using the combination of those 
foreign keys or create a new primary key. In the example above, we can create the 
composite ENROLL table CLASS and STUDENT. In this example, the ENROLL table’s 
primary key is the combination of its foreign keys CLASS_CODE and STU_NUM. But 
the designer could have decided to create a single-attribute new primary key such as 
ENROLL_LINE, using a different line value to identify each ENROLL table row 
uniquely. (Microsoft Access users might use the Autonumber data type to generate 
such line values automatically). 



 
Table name: STUDENT 
Primary key: STU_NUM 
Foreign key: none 

 
 
Because the ENROLL table links two tables, STUDENT and CLASS, it is also called a 
linking table. 
In other words, a linking table is the implementation of a composite entity. 
 
The ENROLL table yields the required M:N to 1:M conversion. Observe that the 
composite entity represented by the ENROLL table must contain at least the primary 
keys of the CLASS and STUDENT tables (CLASS_CODE and STU_NUM, respectively) 
for which it serves as a connector. Also note that the STUDENT and CLASS tables 
now contain only one row per entity. The ENROLL table contains multiple 
occurrences of the foreign key values, but those controlled redundancies are 
incapable of producing anomalies as long as referential integrity is enforced. 
Additional attributes may be assigned as needed. In this case, ENROLL_GRADE is 
selected to satisfy a reporting requirement. Also note that the ENROLL table’s 
primary key consists of the two attributes CLASS_CODE and STU_NUM because both 
the class code and the student number are needed to define a particular student’s 
grade. Naturally, the conversion is reflected in the ERM, too. The revised 
relationship is shown below: 
 
 
Changing the M:N relationship to two 1:M relationships 

 
 
note that the composite entity named ENROLL represents the linking table between 
STUDENT and CLASS. We can increase the amount of available information even as 



we control the database’s redundancies. Below is the expanded ERM, including the 
1:M relationship between COURSE and CLASS. Note that the model is able to handle 
multiple sections of a CLASS while controlling redundancies by making sure that 
all of the COURSE data common to each CLASS are kept in the COURSE table. 
 
expanded entity relationship model 

 
 
The relationship diagram that corresponds to the ERM shown above is as below: 
 

 
 
CODD’S RELATIONAL DATABASE RULES 
In 1985, Dr. E. F. Codd published a list of 12 rules to define a relational database 
system. The reason Dr. Codd published the list was his concern that many vendors 
were marketing products as “relational” even though those products did not meet 
minimum relational standards. Dr. Codd’s list,  serves as a frame of reference for 
what a truly relational database should be. Note that even the dominant database 
vendors do not fully support all 12 rules. 
 
 
Dr. Codd’s 12 Relational Database Rules 



 
 
THE ENTITY RELATIONSHIP MODEL (ERM) 
Peter Chen first introduced the ER data model in 1976; it was the graphical 
representation of entities and their relationships in a database structure that 
quickly became popular because it complemented the relational data model concepts. 
The relational data model and ERM combined to provide the foundation for tightly 
structured database design. ER models are normally represented in an entity 
relationship diagram (ERD), which uses graphical representations to model database 
components. The ERD represents the conceptual database as viewed by the end user. 
ERDs depict the database’s main components: entities, attributes, and relationships. 
Because an entity represents a real-world object, the words entity and object are 
often used interchangeably. The notations used with ERDs are the original Chen 
notation and the newer Crow’s Foot and UML notations. Some conceptual database 
modeling concepts can be expressed only using the Chen notation. Because of its 
implementation emphasis, the Crow’s Foot notation can represent only what could be 
implemented. In summary: 

§ The Chen notation favors conceptual modeling. 
§ The Crow’s Foot notation favors a more implementation-oriented approach. 
§ The UML notation can be used for both conceptual and implementation 

modeling. 
 
The ER model is based on the following components: 



§ Entity: An entity is anything about which data are to be collected and stored. 
An entity is represented in the ERD by a rectangle, also known as an entity box. 
The name of the entity, a noun, is written in the center of the rectangle. The 
entity name is generally written in capital letters and is written in the 
singular form: PAINTER rather than PAINTERS, and EMPLOYEE rather than 
EMPLOYEES. Usually, when applying the ERD to the relational model, an entity 
is mapped to a relational table. Each row in the relational table is known as 
an entity instance or entity occurrence in the ER model. Each entity is 
described by a set of attributes that describes particular characteristics of 
the entity. For example, the entity EMPLOYEE will have attributes such as a 
Social Security number, a last name, and a first name. A collection of like 
entities is known as an entity set. The word entity in the ERM corresponds to a 
table—not to a row—in the relational environment. The ERM refers to a table 
row as an entity instance or entity occurrence.  

§ Attributes: Attributes are characteristics of entities. For example, the 
STUDENT entity includes, among many others, the attributes STU_LNAME, 
STU_FNAME, and STU_INITIAL. In the original Chen notation, attributes are 
represented by ovals and are connected to the entity rectangle with a line. 
Each oval contains the name of the attribute it represents. In the Crow’s Foot 
notation, the attributes are written in the attribute box below the entity 
rectangle. Because the Chen representation is rather space-consuming, 
software vendors have adopted the Crow’s Foot attribute display. 
 
Attributes of the STUDENT entity: Chen and crow’s foot 

 
 
Required and Optional Attributes: A required attribute is an attribute that 
must have a value; in other words, it cannot be left empty. As shown above 
there are two boldfaced attributes in the Crow’s Foot notation. This indicates 
that a data entry will be required. In this example, STU_LNAME and STU_FNAME 
require data entries because of the assumption that all students have a last 
name and a first name. But students might not have a middle name, and perhaps 
they do not (yet) have a phone number and an e-mail address. Therefore, those 
attributes are not presented in boldface in the entity box. An optional 
attribute is an attribute that does not require a value; therefore, it can be 
left empty. 
Attribute domains: Attributes have a domain. A domain is the set of possible 
values for a given attribute. For example, the domain for the grade point 
average (GPA) attribute is written (0,4) because the lowest possible GPA value 
is 0 and the highest possible value is 4. The domain for the gender attribute 
consists of only two possibilities: M or F (or some other equivalent code). The 
domain for a company’s date of hire attribute consists of all dates that fit in 
a range (for example, company startup date to current date). Attributes may 
share a domain. For instance, a student address and a professor address share 
the same domain of all possible addresses. In fact, the data dictionary may let 
a newly declared attribute inherit the characteristics of an existing attribute 
if the same attribute name is used. For example, the PROFESSOR and STUDENT 
entities may each have an attribute named ADDRESS and could therefore share 
a domain. 
Identifiers (Primary Keys): The ERM uses identifiers, that is, one or more 
attributes that uniquely identify each entity instance. In the relational model, 



such identifiers are mapped to primary keys (PKs) in tables. Identifiers are 
underlined in the ERD. Key attributes 
are also underlined in a frequently used table structure shorthand notation 
using the format: 
TABLE NAME (KEY_ATTRIBUTE 1, ATTRIBUTE 2, ATTRIBUTE 3, . . . ATTRIBUTE K) 
 
For example, a CAR entity may be represented by: 

CAR (CAR_VIN, MOD_CODE, CAR_YEAR, CAR_COLOR) 
(Each car is identified by a unique vehicle identification number, or CAR_VIN.) 
Composite Identifiers: Ideally, an entity identifier is composed of only a single 
attribute. However, it is possible to use a composite identifier, that is, a 
primary key composed of more than one attribute. E.g. CLASS entity of 
CRS_CODE and CLASS_SECTION instead of using CLASS_CODE. Either approach 
uniquely identifies each entity instance.  
 
Composite and Simple Attributes: Attributes are classified as simple or 
composite. A composite attribute, not to be confused with a composite key, is an 
attribute that can be further subdivided to yield additional attributes. For 
example, the attribute ADDRESS can be subdivided into street, city, state, and 
zip code. Similarly, the attribute PHONE_NUMBER can be subdivided into area 
code and exchange number. A simple attribute is an attribute that cannot be 
subdivided. For example, age, sex and marital status would be classified as 
simple attributes. To facilitate detailed queries, it is wise to change composite 
attributes into a series of simple attributes. 
 
Single-Valued Attributes: A single-valued attribute is an attribute that can 
have only a single value. For example, a person can have only one Social 
Security number, and a manufactured part can have only one serial number. 
Keep in mind that a single-valued attribute is not necessarily a simple 
attribute. For instance, a part’s serial number, such as SE-08-02-189935, is 
single-valued, but it is a composite attribute because it can be subdivided into 
the region in which the part was produced (SE), the plant within that region 
(08), the shift within the plant (02), and the part number (189935).  
 
Multivalued Attributes: Multivalued attributes are attributes that can have 
many values. For instance, a person may have several college degrees, and a 
household may have several different phones, each with its own number. 
Similarly, a car’s color may be subdivided into many colors (that is, colors for 
the roof, body, and trim). In the Chen ERM, the multivalued attributes are 
shown by a double line connecting the attribute to the entity. The Crow’s Foot 
notation does not identify multivalued attributes.  
 

 
A multivalued attribute in an entity 
 
The ERD above contains all of the components introduced thus far. Note that 
CAR_VIN is the primary key, and CAR_COLOR is a multivalued attribute of the 
CAR entity. 
 
Implementing Multivalued Attributes 
Although the conceptual model can handle M:N relationships and multivalued 
attributes, it poor practice to implement them in the RDBMS. In the relational 
table, each column/row intersection represents a single data value. The 
designer must decide on one of two possible courses of action to handle 
multivalued attributes: 



i. Split the multivalued attribute to create several new attributes. For 
example, the CAR entity’s attribute CAR_COLOR can be split to create the 
new attributes CAR_TOPCOLOR, CAR_BODYCOLOR, and CAR_TRIMCOLOR, 
which are then assigned to the CAR entity. Although this solution seems 
to work, its adoption can lead to major structural problems in the table. 
For example, if additional color components—such as a logo color—are 
added for some cars, the table structure must be modified to accommodate 
the new color section. In that case, cars that do not have such color 
sections generate nulls for the nonexisting components, or their color 
entries for those sections are entered as N/A to indicate “not 
applicable.” Also consider the employee entity containing employee 
degrees and certifications. If some employees have 10 degrees and 
certifications while most have fewer or none, the number of 
degree/certification attributes would number 10, and most of those 
attribute values would be null for most of the employees.) In short, 
while solution 1 is practicable, it is not an acceptable solution. 
 

	 	
Splitting the multivalued attribute into new attributes 
 

ii. Create a new entity composed of the original multivalued attribute’s 
components. This new entity allows the designer to define color for 
different sections of the car. (See Table below).  
 
Components of the Multivalued Attribute 

 
 
Another benefit we can derive from this approach is that we are now able 
to assign as many colors as necessary without having to change the table 
structure.  
 

 
A new entity set composed of a multivalued attribute’s components 
 
Note that the ERM shown in Figure above reflects the components listed 
in previous table. This is the preferred way to deal with multivalued 
attributes. Creating a new entity in a 1:M relationship with the original 
entity yields several benefits: it’s a more flexible, expandable solution, 
and it is compatible with the relational model! 
 



Derived Attributes: A derived attribute is an attribute whose value is 
calculated (derived) from other attributes. The derived attribute need 
not be physically stored within the database; instead, it can be derived 
by using an algorithm. For example, an employee’s age, EMP_AGE, may be 
found by computing the integer value of the difference between the 
current date and the EMP_DOB. In Microsoft Access, we use:  

INT((DATE() – EMP_DOB)/365) 
In Microsoft SQL Server, we use  

SELECT DATEDIFF(“YEAR”, EMP_DOB, GETDATE()),  
where DATEDIFF is a function that computes the difference between 
dates. The first parameter indicates the measurement, in this case, years.  
In Oracle, we use SYSDATE instead of DATE(). 
A derived attribute is indicated in the Chen notation by a dashed line 
connecting the attribute and the entity. The Crow’s Foot notation does 
not have a method for distinguishing the derived attribute from other 
attributes. 
 

 
Depiction of a derived attribute 
 
Derived attributes are sometimes referred to as computed attributes. A 
derived attribute computation can be as simple as adding two attribute 
values located on the same row, or it can be the result of aggregating 
the sum of values located on many table rows (from the same table or 
from a different table). The decision to store derived attributes in 
database tables depends on the processing requirements and the 
constraints placed on a particular application. The designer should be 
able to balance the design in accordance with such constraints.  
Table below shows the advantages and disadvantages of storing (or not 
storing) derived attributes in the database. 
 
advantages and disadvantages of storing (or not storing) derived 
attributes in the database. 

 
 

§ Relationships. Relationships describe associations among data. Most 
relationships describe associations between two entities. The three types of 
relationships among data include: 

§ one-to-many (1:M) 
§ many-to-many (M:N) 
§ and one-to-one (1:1).  

The ER model uses the term connectivity to label the relationship types. The 
name of the relationship is usually an active or passive verb. For example, a 
PAINTER paints many PAINTINGs; an EMPLOYEE learns many SKILLs; an 
EMPLOYEE manages a STORE. Illustrated below are the different types of 



relationships using two ER notations: the original Chen notation and the more 
current Crow’s Foot notation. 
 
 

 
 
The left side of the ER diagram shows the Chen notation, based on Peter Chen’s 
landmark paper. In this notation, the connectivities are written next to each 
entity box. Relationships are represented by a diamond connected to the 
related entities through a relationship line. The relationship name is written 
inside the diamond. The right side illustrates the Crow’s Foot notation. The 
name “Crow’s Foot” is derived from the three-pronged symbol used to represent 
the “many” side of the relationship. In the basic Crow’s Foot ERD represented 
above, the connectivities are represented by symbols. For example, the “1” is 
represented by a short line segment, and the “M” is represented by the three-
pronged “crow’s foot.” The relationship name is written above the relationship 
line. In Figure above, entities and relationships are shown in a horizontal 
format, but they may also be oriented vertically. The entity location and the 
order in which the entities are presented are immaterial; just remember to read 
a 1:M relationship from the “1” side to the “M” side.  
 
Connectivity and Cardinality 
As stated above, the term connectivity is used to describe the relationship 
classification. Cardinality expresses the minimum and maximum number of 
entity occurrences associated with one occurrence of the related entity. In 
the ERD, cardinality is indicated by placing the appropriate numbers beside the 
entities, using the format (x,y). The first value represents the minimum number 
of associated entities, while the second value represents the maximum number 
of associated entities. Many database designers who use Crow’s Foot modeling 
notation do not depict the specific cardinalities on the ER diagram itself 
because the specific limits described by the cardinalities cannot be 
implemented directly through the database design. Correspondingly, some 
Crow’s Foot ER modeling tools do not print the numeric cardinality range in 
the diagram; instead, you can add it as text if you want to have it shown.  
 



 
Connectivity and Cardinality 
 
Knowing the minimum and maximum number of entity occurrences is very useful 
at the application software level. A college might want to ensure that a class 
is not taught unless it has at least 10 students enrolled. Similarly, if the 
classroom can hold only 30 students, the application software should use that 
cardinality to limit enrollment in the class. However, keep in mind that the 
DBMS cannot handle the implementation of the cardinalities at the table 
level—that capability is provided by the application software or by triggers.  
 
Existence Dependence: An entity is said to be existence-dependent if it can 
exist in the database only when it is associated with another related entity 
occurrence. In implementation terms, an entity is existence-dependent if it has 
a mandatory foreign key—that is, a foreign key attribute that cannot be null. 
For example, if an employee wants to claim one or more dependents for tax-
withholding purposes, the relationship “EMPLOYEE claims DEPENDENT” would 
be appropriate. In that case, the DEPENDENT entity is clearly existence-
dependent on the EMPLOYEE entity because it is impossible for the dependent 
to exist apart from the EMPLOYEE in the database. If an entity can exist apart 
from all of its related entities (it is existence-independent), then that entity 
is referred to as a strong entity or regular entity.  
 
Relationship Strength: The concept of relationship strength is based on how 
the primary key of a related entity is defined. To implement a relationship, the 
primary key of one entity appears as a foreign key in the related entity. For 
example, the 1:M relationship between VENDOR and PRODUCT is implemented by 
using the VEND_CODE primary key in VENDOR as a foreign key in PRODUCT. 
There are times when the foreign key also is a primary key component in the 
related entity. Relationship strength decisions affect primary key 
arrangement in database design. 
 

Weak (Non-identifying) Relationships: A weak relationship, also known 
as a non-identifying relationship, exists if the PK of the related entity 
does not contain a PK component of the parent entity. By default, 
relationships are established by having the PK of the parent entity 
appear as an FK on the related entity. For example, suppose that the 
COURSE and CLASS entities are defined as: 
COURSE(CRS_CODE, DEPT_CODE, CRS_DESCRIPTION, CRS_CREDIT) 
CLASS(CLASS_CODE, CRS_CODE, CLASS_SECTION, CLASS_TIME, 
ROOM_CODE, PROF_NUM) 
In this case, a weak relationship exists between COURSE and CLASS 
because the CLASS_CODE is the CLASS entity’s PK, while the CRS_CODE 
in CLASS is only an FK. In this example, the CLASS PK did not inherit the 
PK component from the COURSE entity. 
 
Table name: COURSE 

 



 
 

 
Crow’s Foot notation depicts a strong relationship 
 
Strong (Identifying) Relationships: A strong relationship, also known 
as an identifying relationship, exists when the PK of the related entity 
contains a PK component of the parent entity. For example, the 
definitions of the COURSE and CLASS entities COURSE(CRS_CODE, 
DEPT_CODE, CRS_DESCRIPTION, CRS_CREDIT) 
CLASS(CRS_CODE, CLASS_SECTION , CLASS_TIME, ROOM_CODE, 
PROF_NUM) 
indicate that a strong relationship exists between COURSE and CLASS, 
because the CLASS entity’s composite PK is composed of CRS_CODE + 
CLASS_SECTION. (Note that the CRS_CODE in CLASS is also the FK to the 
COURSE entity.) The Crow’s Foot notation depicts the strong 
(identifying) relationship with a solid line between the entities. Whether 
the relationship between COURSE and CLASS is strong or weak depends 
on how the CLASS entity’s primary key is defined. Keep in mind that the 
order in which the tables are created and loaded is very important. For 
example, in the “COURSE generates CLASS” relationship, the COURSE 
table must be created before the CLASS table. After all, it would not be 
acceptable to have the CLASS table’s foreign key reference a COURSE 
table that does not yet exist.  

 
Crow’s Foot notation depicts a strong relationship 
  
Weak Entities: a weak entity is one that meets two conditions: 

§ The entity is existence-dependent; that is, it cannot exist without 
the entity with which it has a relationship.  

§ The entity has a primary key that is partially or totally derived 
from the parent entity in the relationship. 

For example, a company insurance policy insures an employee and his/her 
dependents. For the purpose of describing an insurance policy, an 



EMPLOYEE might or might not have a DEPENDENT, but the DEPENDENT 
must be associated with an EMPLOYEE. Moreover, the DEPENDENT cannot 
exist without the EMPLOYEE; that is, a person cannot get insurance 
coverage as a dependent unless s(he) happens to be a dependent of an 
employee. DEPENDENT is the weak entity in the relationship “EMPLOYEE 
has DEPENDENT.”  
 

 
 
Note that the Chen notation above identifies the weak entity by using a 
double-walled entity rectangle. The Crow’s Foot notation generated by 
Visio Professional uses the relationship line and the PK/FK designation 
to indicate whether the related entity is weak.  
A strong (identifying) relationship indicates that the related entity is 
weak. Such a relationship means that both conditions for the weak entity 
definition have been met—the related entity is existence-dependent, and 
the PK of the related entity contains a PK component of the parent entity.  
Remember that the weak entity inherits part of its primary key from its 
strong counterpart. For example, at least part of the DEPENDENT 
entity’s key shown in Figure above was inherited from the EMPLOYEE 
entity: 
EMPLOYEE (EMP_NUM, EMP_LNAME, EMP_FNAME, EMP_INITIAL, EMP_DOB, 
EMP_HIREDATE) 
DEPENDENT (EMP_NUM, DEP_NUM, DEP_FNAME, DEP_DOB) 
 

 
Crowfoot symbols 

 
§ Relationship Degree: A relationship degree indicates the number of entities 

or participants associated with a relationship. A unary relationship exists 
when an association is maintained within a single entity. A binary relationship 
exists when two entities are associated. A ternary relationship exists when 
three entities are associated. Although higher degrees exist, they are rare and 
are not specifically named. (For example, an association of four entities is 
described simply as a four-degree relationship.) 



 

 
Three types of relationship degree 
 

o Unary Relationships: In the case of the unary relationship shown above, 
an employee within the EMPLOYEE entity is the manager for one or more 
employees within that entity. In this case, the existence of the “manages” 
relationship means that EMPLOYEE requires another EMPLOYEE to be the 
manager—that is, EMPLOYEE has a relationship with itself. Such a 
relationship is known as a recursive relationship.  

o Binary Relationships A binary relationship exists when two entities are 
associated in a relationship. Binary relationships are most common. In 
fact, to simplify the conceptual design, whenever possible, most higher-
order (ternary and higher) relationships are decomposed into 
appropriate equivalent binary relationships. 

o Ternary and Higher-Degree Relationships: Although most relationships 
are binary, the use of ternary and higher-order relationships does allow 
the designer some latitude regarding the semantics of a problem. A 
ternary relationship implies an association among three different 
entities.  

 
Example 
 
Mr Brandon’s the owner of SPEED CAFÉ has been having problems with the 
management of his Café. Having learnt that you are a DB designer, he believes he has 
finally found a solution. He has asked you to automate the management of his Café. 
Since this will involve a database backend, you are saddled with the task of showing 
him a good database model based on the following business rules: 

• The café has several employees each having a unique identification number, 
names and dates of birth. 

• An employee is either a “Technical Officer” or “Casual Employee”, but not 
both. A Technical officer has access to one or more computing facilities in 



the Café and therefore has login usernames and passwords. Technical 
officers have varying salary rates based on their ranks. Casual Employee 
however, do not have access to computing facilities and their salaries are 
wages (i.e. based on the number of hours worked). 

• All Computing facilities in the Café have names (e.g. computer, cable, printer 
etc.) and date of purchase (remember names are not unique, so you will have 
to choose a surrogate key). 

• Access to Internet facilities in the Café (either by a staff or customer) is 
through a ticket. Each ticket has a unique ticket number, duration, time of 
production, period (number of days) of validity and price in Naira. 

 
Draw an implementation oriented ER diagram for SPEED CAFÉ database indicating 
necessary connectivities, cardinalities and participation constraints (relationship 
strengths). You can state the necessary assumptions made. 
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